
Lagrangian Control through Deep-RL:
Applications to Bottleneck Decongestion

Eugene Vinitsky∗ , Kanaad Parvate†, Aboudy Kreidieh‡, Cathy Wu†, Alexandre Bayen†‡§
∗UC Berkeley, Department of Mechanical Engineering

†UC Berkeley, Electrical Engineering and Computer Science
‡UC Berkeley, Department of Civil and Environmental Engineering

§UC Berkeley, Institute for Transportation Studies

Abstract— Using deep reinforcement learning, we derive
novel control policies for autonomous vehicles to improve the
throughput of a bottleneck modeled after the San Francisco-
Oakland Bay Bridge. Using Flow, a new library for applying
deep reinforcement learning to traffic micro-simulators, we
consider the problem of improving the throughput of a traffic
benchmark: a two-stage bottleneck where four lanes reduce
to two and then reduce to one. We first characterize the
inflow-outflow curve of this bottleneck without any control. We
introduce an inflow of autonomous vehicles with the intent of
improving the congestion through Lagrangian control. To han-
dle the varying number of autonomous vehicles in the system
we derive a per-lane variable speed limits parametrization of
the controller. We demonstrate that a 10% penetration rate of
controlled autonomous vehicles can improve the throughput of
the bottleneck by 200 vehicles per hour: a 25% improvement at
high inflows. Finally, we compare the performance of our con-
trol policies to feedback ramp metering and show that the AV
controller provides comparable performance to ramp metering
without the need to build new ramp metering infrastructure.
Illustrative videos of the results can be found at https:
//sites.google.com/view/itsc-lagrangian-avs/home and
code and tutorials can be found at https://github.com/
flow-project/flow.

I. INTRODUCTION

Over the past few years, deep reinforcement learning (RL)
has emerged as a novel control technique for highly non-
linear, stochastic, data-rich problems. RL has been applied
to problems as diverse as control of 3D humanoid locomo-
tion [1], [2], control of Atari games directly from pixels [3],
and control of multi-legged mini-robots [4]. These successes
have prompted the application of RL techniques to intelligent
transportation. RL has been applied to Variable Speed Limit
control [5], [6], control of traffic lights [7], [8], and ramp
metering [9], [10], among many others. In this article, we
consider the prospect of using RL to learn longitudinal
controllers for autonomous vehicles in a congested setting
with only partial autonomy.

Advances in automation of transportation networks offer
an unparalleled opportunity to implement novel traffic con-
trol paradigms. The past few years have seen a steady stream
of highlights ranging from California approving autonomous
cars without a driver [11] to Waymo ordering 20,000 vehicles
for conversion to automation [12]. In areas such as Phoenix,

Corresponding author: Eugene Vinitsky (evinitsky@berkeley.edu)
Email addresses:{aboudy, kanaad, evinitsky, bayen}@berkeley.edu,

cathywu@mit.edu

Arizona and the California Bay Area, it is likely that the next
5-10 years will see the emergence of autonomy-on-demand
services in which users can call for an automated vehicle to
transport them to their next location.

There exists a vast amount of connected, autonomous ve-
hicle (CAV) literature that attempts to quantify the potential
impact of automation on traffic congestion. The central idea
unifying CAV work is that automated vehicles can allevi-
ate or replace human driving inefficiency, whether through
incorporation of upstream/downstream traffic information or
improved reaction time. In this work, modified vehicle ac-
celeration profiles are used for tasks as varied as dissipating
traffic shock-waves [13], improving highway capacity via
decreased following gap [14], and inducing cooperative on-
ramp merges [15]. Additionally, work has been done on CAV
driving strategies for decongestion of a bottleneck [16].

In prior work, we focused on characterizing the traffic-
smoothing capabilities of AVs in a variety of small, repre-
sentative scenarios [17]. To do so, we developed Flow [18],
a library for applying reinforcement learning to autonomous
vehicles in traffic micro-simulators. In earlier research, in-
spired by work with AVs in [13], we demonstrated the
ability of RL to learn a controller for a single autonomous
vehicle that could smooth the spontaneous stop-and-go waves
that emerge in a ring of vehicles [19]. This “toy” example
demonstrated the potential for RL to learn controllers for AVs
but left the problem of control of more complex scenarios
to future work.

In the present work we use Flow to introduce a novel
traffic benchmark: demonstrating the potential impact of
CAVs on de-congestion of a traffic bottleneck. Inspired
by the bottleneck dynamics of the San Francisco-Oakland
Bay Bridge, we focus on a situation in which a multi-lane
highway has its number of lanes cut in half by a zipper
merge, and then cut in half again by another merge. In
simulation, we demonstrate that this bottleneck exhibits the
phenomenon of capacity drop [20] [21] in which the outflow
of the bottleneck increases with inflow but suddenly drops
down once the inflow exceeds a critical value.

One of the major successes of intelligent transportation
infrastructure is the implementation of feedback control for
ramp metering [22], in which the inflow to a bottleneck is
reduced to keep the inflow below its critical value. This arti-
cle attempts to extend the concept of metering (traditionally

https://sites.google.com/view/itsc-lagrangian-avs/home
https://sites.google.com/view/itsc-lagrangian-avs/home
https://github.com/flow-project/flow
https://github.com/flow-project/flow


operated by fixed [Eulerian] traffic light infrastructure) to
AVs. For this, it relies on Lagrangian control of the flow in
which AVs are used as mobile actuators to achieve effects
similar to metering (i.e. flow control). Unlike ramp metering,
where control can be applied to each vehicle but cannot be
applied past the meter, the control afforded by AVs can be
applied at any point but only affects the platoons that form
behind them in their lanes. However, the AVs can completely
control the flow speed of their platoons and can accelerate
and decelerate to control the relative spacing of vehicles in
their platoon. Control of platoon spacing makes it possible
for two AVs in adjacent platoons to coordinate to encourage
easier merging between their platoons. We refer to this as
Lagrangian control, as is commonly done in fluid mechanics,
in reference to the trajectory-based actuation as opposed to
the Eulerian control volume-based actuation.

The dynamics of a bottleneck are both non-linear and diffi-
cult to model with microscopic models due to the complexity
of lateral and longitudinal dynamics in multi-lane settings. To
sidestep this issue, we use model-free reinforcement learning,
in which we train the AVs with the goal of maximizing
the outflow of the bottleneck. We show that despite the
stochasticity in the platoon lengths and distributions of AVs,
AVs can learn to effectively act like a ramp meter. AVs can
react to the formation or warning-signs of congestion and
regulate the traffic inflow to enable congestion dissipation.
We demonstrate that a single centralized controller acting on
the speed limits of the autonomous vehicles in the bottleneck
can effectively stabilize the outflow of the bottleneck at
1000 vehicles per hour: 200 vehicles per hour above the
uncontrolled equilibrium.

The main contributions of this work are:
1) The development of a deep-RL model-free framework

for Lagrangian control of freeways by AVs
2) The learning of Lagrangian control policies for bottle-

neck congestion.
3) The demonstration of an improvement of 25% in

bottleneck outflow at inflows past the critical inflow.
4) A code release of a novel traffic control benchmark at

https://github.com/flow-project/flow.
The rest of the article is organized as follows. Section II

provides an introduction to deep RL policy gradient methods,
car following models, and Flow, the deep reinforcement
learning to micro-simulator library that we use for our ex-
periments. Section III formulates the capacity drop diagrams
of our bottleneck as well as the results from the autonomous
vehicle control. Section IV provides a discussion of the
results. Finally Section. V summarizes our work and provides
a discussion of possible future research directions.

II. BACKGROUND

A. Reinforcement Learning

In this section, we discuss the notation and describe in
brief the key ideas used in reinforcement learning. Re-
inforcement learning focuses on maximization of the dis-
counted reward of a finite-horizon Markov decision process

(MDP) [23]. The system described in this article solves tasks
which conform to the standard structure of a finite-horizon
discounted MDP, defined by the tuple (S,A, P, r, ρ0, γ, T ),
where S is a (possibly infinite) set of states, A is a set of
actions, P : S × A× S → R≥0 is the transition probability
distribution for moving from one state s to another state s′

given action a, r : S × A → R is the reward function,
ρ0 : S → R≥0 is the initial state distribution, γ ∈ (0, 1] is
the discount factor, and T is the horizon. For partially ob-
servable tasks, which conform to the structure of a partially
observable Markov decision process (POMDP), two more
components are required, namely Ω, a set of observations of
the hidden states, and O : S × Ω → R≥0, the observation
probability distribution.

RL studies the problem of how an agent can learn to
take actions in its environment to maximize its cumulative
discounted reward: specifically it tries to optimize R =∑T
t=0 γ

trt where rt is the reward at time t. The goal is
to use the observed data from the MDP to optimize a policy
Π : S → A, mapping states to actions, that maximizes R.
It is increasingly popular to parametrize the policy via a
neural net. We will denote the parameters of this policy, also
known as neural network weights, by θ and the policy by
πθ. A neural net consists of a stacked set of affine linear
transforms and non-linearities that the input is alternately
passed through. The presence of multiple stacked layers is
the origin of the term “deep” reinforcement learning.

In this work we exclusively use a Gated Recurrent Unit
Neural Net (GRU) [24], a neural net with a hidden state that
gives the policy memory. Readout and editing of the hidden
states is done by a series of “gates” whose parameters are
evolved as the learning progresses. As will be discussed in
Sec. III-B, the usage of memory is important for the partially
observed tasks we tackle in this work. In our partially
observed Markov decision process (POMDP), hidden states
like the positions and velocities of the automated vehicles
can only be fully observed on occasion and thus must be
stored.

B. Policy Gradient Methods

Policy gradient methods take the set of state-action-reward
pairs generated from the experiments and use them to
estimate ∇θR, the gradient of the reward with respect to
the parameters of the policy which can be used to update
the policy. To optimize the parameters of the neural net we
use Trust Region Policy Optimization (TRPO) [25], a policy
gradient method. TRPO constrains the KL divergence, a
measure of the distance of two probability distributions,
between the original policy and the policy update to be within
a fixed bound. This prevents the noisy gradient update from
drastically shifting the policy in a bad direction.

C. Car Following Models

For our model of the driving dynamics, we used the Intel-
ligent Driver Model [26] (IDM) that is built into SUMO [27].
IDM is a microscopic car-following model commonly used
to model realistic driver behavior. Using this model, the

https://github.com/flow-project/flow


acceleration for vehicle α is determined by its bumper-to-
bumper headway sα (distance to preceding vehicle), ego
velocity vα, and relative velocity ∆vα, via the following
equation:

aIDM =
dvα
dt

= a

[
1−

(
vα
v0

)δ
−
(
s∗(vα,∆vα)

sα

)2]
(1)

where s∗ is the desired headway of the vehicle, denoted by:

s∗(vα,∆vα) = s0 + max

(
0, vαT +

vα∆vα

2
√
ab

)
(2)

where s0, v0, T, δ, a, b are given parameters. Typical values
for these parameters can be found in [26]. To better
model the natural variability in driving behavior, we induce
stochasticity in the desired driving speed v0. On any edge, the
value of v0 for a given vehicle is sampled from a Gaussian
whose mean is the speed limit of the lane and whose standard
deviation is 20% of the speed limit.

These car following models are not inherently collision-
free, we supplement them with a safe following rule: in the
event that a vehicle is about to crash it immediately comes to
a full stop. This is unrealistic, but empirically this behavior
occurs rarely.

D. Flow

We run our experiments in Flow [18], a library we built
that provides an interface between a traffic microsimulator,
SUMO [27], and popular reinforcement learning libraries,
rllab [28] and RLlib [29], reinforcement learning and dis-
tributed reinforcement learning libraries respectively. Flow
enables users to create new traffic networks via a python in-
terface, introduce autonomous controllers into the networks,
and then train the controllers on high-CPU machines on the
cloud via AWS EC2. To make it easier to reproduce our
experiments or try to improve on our benchmarks, the code
for Flow, scripts for running our experiments, and tutorials
can be found at https://github.com/cathywu/flow

Fig. 1 describes the process of training the policy in Flow.
The controller, here represented by policy Π, has output
sampled from multi-dimensional Gaussian N (µ, σI) where
µ and σI are vectors of means and standard deviations
and σI is the covariance. These are taken in by the traffic
micro-simulator, which outputs the next state and a reward.
After accumulating enough samples, the states, actions, and
rewards are passed to the training procedure, which combines
them with the baselines to produce advantages i.e. estimates
of which actions performed well. These are passed to the
optimizer to compute a new policy.

III. EXPERIMENTS

A. Experiment setup

We attempt to decongest the bottleneck depicted in Fig.
3 in which a long straight segment is followed by two
zipper merges taking four lanes to two, and then another
zipper merge sending two lanes to one. This is a simplified
model of the post-ramp meter bottleneck on the Oakland-
San Francisco Bay Bridge. At inflows above 1500 vehicles

Fig. 1: Diagram of the iterative process in Flow. Portions in
red correspond to the controller and rollout process, green
to the training process, and blue to traffic simulation.

per hour, congestion becomes the equilibrium state of the
bottleneck model. Once congestion forms, as in Fig. 4,
the congestion is unable to dissipate and begins to extend
upstream. Of the indicated segments, segments 2, 3, 4 are
controllable; these segments can be arbitrarily divided into
further pieces on which control can be applied.

An important point to note is that for the purposes of this
experiment, lane changing is disabled for all the vehicles in
this system. This is partially justified by the lane changing
structure seen in Fig. 2, where only lane changing between
pairs of lanes is allowed. As discussed in Sec. V, the addition
of lane-changing makes the problem more difficult and is
postponed for later work.

B. Reinforcement Learning Structure

1) Action space: We parametrize the controller as a neural
net mapping the observations to a mean and diagonal covari-
ance matrix of a Gaussian. The actions are sampled from the
Gaussian; this is a standard controller parametrization [30].
We pick a parametrization of the control action that is
invariant to the number of AVs in the system; namely, the
speed limits of the autonomous vehicles. Segments two and
three are divided into two equally sized pieces, segment four
is divided into three. Segments one and five are uncontrolled.
For each lane in each piece, at every time-step the controller
is allowed to shift the maximum speed of the autonomous
vehicles in the segment. The dynamics model of the au-
tonomous vehicles are otherwise given by the Intelligent
Driver Model described in sec. II-C i.e.

vAV
j (t+ ∆t) = min

(
vAV (t) + aIDM∆t, vmax

j (t)
)

(3)

where vAVj (t) is the velocity of autonomous vehicle j at time
t, aIDM is the acceleration given by an IDM controller, ∆t

https://github.com/cathywu/flow


Fig. 2: Bay bridge merge. Relevant portion selected in white.
Traffic travels from right to left.

Fig. 3: Long entering segment followed by two zipper
merges, a long segment, and then another zipper merge. Red
cars are automated, human drivers are in white. Controlled
segments and segment names are indicated. Scale is severely
distorted to make visible relevant merge sections.

Fig. 4: Congestion forming in the bottleneck.

is the time-step, and vmax
j (t) is the maximum speed set by

the RL agent for autonomous vehicle j. At each step for
each segment the maximum speed of autonomous vehicle j
is updated via

vmax
j (t+ 1) = vmax

j (t) + aagent (4)

where aagent ∈ [−1.5, 1.0]. This range is picked to be the
minimum and maximum acceleration values for a single
time-step, so that unphysical accelerations are not com-
manded. Decelerations of 1.5 m

s2 and accelerations of 1.0 m
s2

are within range of most vehicles. We use these relatively
low accelerations to make the scheme implementable in
real traffic. Additionally, we note that when the autonomous
vehicles enter the merge areas, their maximum speed is set
back to the system’s overall max speed of 23 meters per
second.

2) Observation space: For the purposes of keeping in
mind physical sensing constraints, the state space of the
controller is:

• The density and average speed of human drivers in each
lane for each observed piece

Fig. 5: Illustration of the observation and action division
of segment 3 into three observation pieces and two action
pieces. The provided key indicates the structure of the
observation space for each lane.

• The density and average speed of AVs in each lane for
each observed piece

• The outflow at the final bottleneck
The pieces are:
• One piece for each of segments 1 and five
• Three equally spaced pieces for each of segments 2, 3

and 4
This state space could conceivably be implemented on ex-
isting roadways equipped with loop detectors, sensing tubes,
and vehicle-to-vehicle communication between the AVs. An
illustration of this sensing structure is given in Fig. 5, with
an extended description of what the state space values might
look like for piece 2.

This parametrization of the state space enables us to have
a fixed size state space even as the number of AVs vary.
Furthermore, as long as the number of AVs is low enough
that there are only one or two AVs per lane-segment, it is
possible to track the positions of all the AVs by observing
the changes in density and velocity as the AVs pass from
segment to segment. Thus, at low penetration rates, our
parametrization of the observation space does not entail a
loss of observability.

C. Reward function

For our reward function we simply used the outflow over
the past 20 seconds:

rt = 3600

t∑
i=t−T

nexit

T
(5)

where nexit is the number of vehicles that exited the system
at time-step i. The factor of 3600 converts from vehicles
per-second to vehicles per hour.

D. Capacity diagrams

Fig. 6 presents the inflow-outflow relationship of the
uncontrolled bottleneck model. To compute this, we swept
over inflows from 400 to 2500 in steps of 100, ran 10 runs
for each inflow value, and stored the average outflow over
the last 500 seconds. Fig. 6 presents the average value, 1
std-deviation from the average, and the min and max value



Fig. 6: Inflow vs. outflow for the uncontrolled bottleneck.
The solid line represents the average over 10 runs at each
inflow value, the darker transparent section is one standard
deviation from the mean, and the lighter transparent section
is bounded by the min and max over the two runs.

Fig. 7: Position of the ramp meter on the bottleneck is
represented by the traffic lights.

of each inflow. Below an inflow of 1300 congestion does
not occur, and above 1900 congestion will form with high
certainty. A key point is that once the congestion forms at
these high inflows, at values upwards of 1400, it does not
dissolve. The maximum and minimum outflows for each
inflow are indicated in Fig. 6. Since the congestion does
not dissipate, the maximum outflow observed represents
the highest possible achievable outflow, while the minimum
outflow represents the eventual stable state of the system, i.e.
at inflows above 1400 the outflow will eventually drop to the
equilibrium value of approximately 800 vehicles per hour.

E. Feedback ramp metering

As a baseline to compare the efficacy of our model-free
Lagrangian control, we use a ramp meter whose cycle time,
the ratio of red light to green light time, is output by a
feedback controller [31]. The position of the ramp meter is
depicted in Fig. 7; it sits 140 meters before the bottleneck.

The desired outflow is determined by the feedback con-
troller

q(k + 1) = q(k) +Kf (ncrit − n̂) (6)

where q(k) is the inflow in vehicles per hour, KF is a
feedback coefficient, ncrit is the critical number of vehicles
in segment 4 above which congestion is likely to occur,
and n̂ is the current number of vehicles in segment 4. The
cycle time, c consists of a fixed 6 second green phase and a

Fig. 8: Convergence of the reinforcement learning reward
curve over 400 iterations.

variable length red phase. During the green phase, on average
2 vehicles in each lane are allowed to pass per cycle. Thus,
we can convert between cycle-time c and inflow q via

c =
2M

q
3600 (7)

where M is the number of lanes in the system. This con-
version is used to compute the cycle time from the feedback
controllers q value. We update the cycle every T seconds; this
value was determined empirically. We used T = 30, , KF =
20, ncrit = 8. These values were tuned empirically and we
stress that there may be better values.

F. Experiment details

We ran the reinforcement learning experiments with a
discount factor of .995, a trust-region size of .01, a batch size
of 80000, a horizon of 1000, and trained over 400 iterations.
The controller is a GRU with hidden size of 64 and a tanh
non-linearity. The baseline used to minimize the variance
of the gradient is a polynomial baseline that is fitted after
each iteration. 10% of the vehicles are autonomous. At the
beginning of each training rollout we randomly sample an
inflow value between 1000 and 2000 vehs/hour and keep it
fixed over the course of the rollout. At each time-step, a
random number of vehicles are emitted from the start edge.
Thus, the number of vehicles in each platoon behind the AVs
will be of variable length and it is possible that at any time-
step any given lane may have zero autonomous vehicles in
it. To populate the simulation fully with vehicles, we allow
the experiment to run uncontrolled for 40 seconds before
each run. Finally, taking note that the standard benchmark
for ATARI games repeats each action four times [32], agent
actions are actually sampled once for every two time-steps
and the same action is applied for both time-steps.

G. Results

Fig. 8 depicts the reward curve over the 400 steps of
the training cycle. The flattening near the end of the curve
indicates that the training has almost completely converged.
Thus, we have at least found a local minimum for the total
discounted outflow.

As can be seen in Fig. 9, the partially autonomous system
stabilizes the outflow around an average value of 1000



Fig. 9: Inflow vs. outflow for the bottleneck for the automated
vehicle case (orange) and the uncontrolled case (blue). The
solid line represents the average over 10 runs at each inflow
value.

Fig. 10: Inflow vs. outflow for the bottleneck for the au-
tomated vehicle case (orange) and the feedback controlled
ramp meter (red). The solid line represents the average over
10 runs at each inflow value for RL and 20 for the ramp
meter.

vehicles. For values below an inflow of 1600, it under-
performs the uncontrolled case, but consistently outperforms
it from that point on. Furthermore, it has learned to control
the system outside of the distribution it was trained on, with
the control successfully extending up to an inflow of 2500
vehicles per hour despite only being trained up to an inflow
of 2000 vehicles per hour.

Fig. 10 depicts the results of running 20 iterations of the
feedback ramp meter over the range (1200, 2400) in steps
of 100 and computing the average over each set of runs.

Videos of the results can be found at https://sites.
google.com/view/itsc-lagrangian-avs/home.

IV. DISCUSSION

As demonstrated in Fig. 9, RL has managed to learn a con-
trol strategy for the autonomous vehicles that can effectively
stabilize the bottleneck outflow at the unstable equilibrium
of 1000 vehicles per hour and performs competitively with
ramp metering at high inflows. Although we under-perform

the uncontrolled average velocity below the inflow of 1600
vehicles per hour, as discussed in sec. III-D, this is an
artifact of not running the experiments long enough for
them to achieve their equilibrium state; were we to run the
uncontrolled bottleneck experiments for long enough they
would always reach the minimum values depicted in Fig. 6.
Furthermore, even if control were under-performing at low
inflows, we could imagine that at low inflow values the AVs
just imitate the human vehicles and control would only be
turned on at high inflows.

Additionally, Fig. 10 demonstrates a comparison of the
average outflow between ramp metering and RL. As in the
uncontrolled case, RL under-performs at values below the
critical inflow but matches the performance of feedback ramp
metering above these values.

V. CONCLUSIONS AND FUTURE WORK

In this work we demonstrated that low levels of au-
tonomous penetration, in this case 10%, are sufficient to learn
an effective flow regulation strategy for a severe bottleneck.
We demonstrate that even at low autonomous vehicle pene-
tration rates, the controller is seemingly competitive with a
ramp metering strategy.

The existence of the Mujoco benchmarks [33] has been
instrumental in helping to compare different RL algorithms.
In a similar vein, it is our hope that bottleneck control can
serve as a benchmark for future work examining the impact
of autonomous vehicles on transportation infrastructure. In
this spirit, we outline a few open problems that remain.

As can be seen in the videos, the control strategy involves
deciding when a given platoon is allowed to begin to exit the
system. This strategy should be feasible even at much lower
autonomous vehicle penetrations, so it remains to quantify
the ability to control the bottleneck at different penetration
rates. Furthermore, this type of control strategy should be
possible to reformulate as an optimization problem; an anal-
ysis from this perspective might yield an improved strategy
or one that can provide formal guarantees.

Another direction we intend to explore is the possibility of
using the autonomous vehicles to achieve maximum possible
outflow. As can be seen in the maximum and minimum
values of Fig. 6, although a congested outflow of 800 vehicles
is the equilibrium state of an inflow of 1600, there are occa-
sional runs at which the maximum possible outflow of 1600
vehicles per hour is achieved. This suggests that in some
circumstances, the uncontrolled case can stochastically arrive
at a spacing of cars such that no significant series of merge
conflicts occur at the bottleneck. Thus, it is possible that
the autonomous vehicles can optimally space the vehicles in
their platoons such that this maximum value is consistently
achieved. Trying to achieve a consistent outflow of 1600
vehicles per hour at all high inflows is a possible future
research direction.

Another open question is to develop strategies that are
effective in the presence of lane-changing. In preliminary
experiments, we found that lane-changing made it hard for
the AVs to control their platoons, as the human drivers

https://sites.google.com/view/itsc-lagrangian-avs/home
https://sites.google.com/view/itsc-lagrangian-avs/home


would dodge around the slower moving platoons. While it
is technically true that lane-changing could be forbidden
near bottlenecks, as is partially done on the San Francisco-
Oakland Bay Bridge, it is possible that by effectively
coordinating the platoons it could be possible to create
situations where the incentive to lane-change is suppressed.

Finally, our control strategy is centralized; another ap-
proach would be to attempt to solve this problem with a
decentralized strategy in which each AV is its own actor.
While such a problem might be harder due to the difficulty of
training policies in multi-agent reinforcement learning [34],
each agent would have a significantly smaller set of possible
actions which could simplify the problem.

VI. ACKNOWLEDGEMENTS*

The authors would like to thank Nishant Kheterpal and
Kathy Jang for insight and help with edits. This work is
supported by an AWS Machine Learning Research Award.
Eugene Vinitsky is supported by an NSF Graduate Research
Fellowship.

REFERENCES

[1] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization,” in ICML, pp. 1889–1897, 2015.

[2] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,”
in Advances in Neural Information Processing Systems, pp. 2944–
2952, 2015.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[4] A. Nagabandi, G. Yang, T. Asmar, G. Kahn, S. Levine, and R. S.
Fearing, “Neural network dynamics models for control of under-
actuated legged millirobots,” arXiv preprint arXiv:1711.05253, 2017.

[5] Z. Li, P. Liu, C. Xu, H. Duan, and W. Wang, “Reinforcement learning-
based variable speed limit control strategy to reduce traffic congestion
at freeway recurrent bottlenecks,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 11, pp. 3204–3217, 2017.

[6] F. Zhu and S. V. Ukkusuri, “Accounting for dynamic speed limit
control in a stochastic traffic environment: A reinforcement learning
approach,” Transportation research part C: emerging technologies,
vol. 41, pp. 30–47, 2014.

[7] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk,
“A survey on reinforcement learning models and algorithms for traffic
signal control,” ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 34,
2017.

[8] B. Bakker, S. Whiteson, L. Kester, and F. C. Groen, “Traffic light
control by multiagent reinforcement learning systems,” in Interactive
Collaborative Information Systems, pp. 475–510, Springer, 2010.

[9] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level
control of ramp metering based on multi-task deep reinforcement
learning,” IEEE Transactions on Intelligent Transportation Systems,
2017.

[10] A. Fares and W. Gomaa, “Multi-agent reinforcement learning control
for ramp metering,” in Progress in Systems Engineering, pp. 167–173,
Springer, 2015.

[11]
[12] D. Etherington, “Waymo orders thousands of pacificas for 2018 self-

driving fleet rollout,” Feb 2018.
[13] R. E. Stern, S. Cui, M. L. D. Monache, R. Bhadani, M. Bunting,

M. Churchill, N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli, et al.,
“Dissipation of stop-and-go waves via control of autonomous vehicles:
Field experiments,” arXiv preprint arXiv:1705.01693, 2017.

[14] H. Liu, X. D. Kan, S. E. Shladover, X.-Y. Lu, and R. A. Ferlis, “Impact
of cooperative adaptive cruise control (cacc) on multilane freeway
merge capacity,” tech. rep., 2018.

[15] R. Pueboobpaphan, F. Liu, and B. van Arem, “The impacts of a
communication based merging assistant on traffic flows of manual
and equipped vehicles at an on-ramp using traffic flow simulation,”
in Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on, pp. 1468–1473, IEEE, 2010.

[16] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Adaptive
cruise control design for active congestion avoidance,” Transportation
Research Part C: Emerging Technologies, vol. 16, no. 6, pp. 668–683,
2008.

[17] C. Wu, A. Kreidieh, E. Vinitsky, and A. M. Bayen, “Emergent behav-
iors in mixed-autonomy traffic,” in Conference on Robot Learning,
pp. 398–407, 2017.

[18] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow:
Architecture and benchmarking for reinforcement learning in traffic
control,” arXiv preprint arXiv:1710.05465, 2017.

[19] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama,
K. Nishinari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without
bottlenecksexperimental evidence for the physical mechanism of the
formation of a jam,” New journal of physics, vol. 10, no. 3, p. 033001,
2008.

[20] F. L. Hall and K. Agyemang-Duah, “Freeway capacity drop and the
definition of capacity,” Transportation research record, no. 1320, 1991.

[21] K. Chung, J. Rudjanakanoknad, and M. J. Cassidy, “Relation between
traffic density and capacity drop at three freeway bottlenecks,” Trans-
portation Research Part B: Methodological, vol. 41, no. 1, pp. 82–95,
2007.

[22] M. Papageorgiou, H. Hadj-Salem, and J.-M. Blosseville, “Alinea: A
local feedback control law for on-ramp metering,” Transportation
Research Record, vol. 1320, no. 1, pp. 58–67, 1991.

[23] R. Bellman, “A markovian decision process,” Journal of Mathematics
and Mechanics, pp. 679–684, 1957.

[24] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, pp. 1889–1897, 2015.

[26] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[27] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, pp. 128–138, December 2012.

[28] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in International Conference on Machine Learning, pp. 1329–1338,
2016.

[29] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez,
K. Goldberg, and I. Stoica, “Ray rllib: A composable and scalable re-
inforcement learning library,” arXiv preprint arXiv:1712.09381, 2017.

[30] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, pp. 1071–1079, 2014.

[31] A. D. Spiliopoulou, I. Papamichail, and M. Papageorgiou, “Toll
plaza merging traffic control for throughput maximization,” Journal
of Transportation Engineering, vol. 136, no. 1, pp. 67–76, 2009.

[32] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos,
“Increasing the action gap: New operators for reinforcement learning.,”
in AAAI, pp. 1476–1483, 2016.

[33] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pp. 5026–5033, IEEE, 2012.

[34] L. Mescheder, S. Nowozin, and A. Geiger, “The numerics of gans,” in
Advances in Neural Information Processing Systems, pp. 1823–1833,
2017.


	Introduction
	Background
	Reinforcement Learning
	Policy Gradient Methods
	Car Following Models
	Flow

	Experiments
	Experiment setup
	Reinforcement Learning Structure
	Action space
	Observation space

	Reward function
	Capacity diagrams
	Feedback ramp metering
	Experiment details
	Results

	Discussion
	Conclusions and Future work
	Acknowledgements*
	References

